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ABS

An Autonomous Underwater Vehicle (AUV) is an unmanned

submersible vehicle capable of performing a variety of

missions. The AUV, which is the subject of this research, is

a small prototype vehicle equipped with various control

surfaces as well as telemetry devices which provide pertinent

measurements of the vehicle states. This research is directed

toward the development and implementation of a digital control

program which provides robust depth control of the vehicle.

An adaptive parameter estimation routine is used to develop

the model of the relationship between the actuator commands

and vehicle response. State feedback is then provided using

a variable structure approach. The control algorithm has been

implemented through a Turbo Pascal digital control program

executed on a PC/AT computer. Results of the parameter

estimation routine and controller implementation are

discussed. Accession For
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I. INTRODUCTION

Currently, there is a strong interest within the U.S. Navy

concerning the development of an Autonomous Underwater Vehicle

(AUV). The possible mission objectives of such a vehicle are

far-ranging, including applications in operations such as ASW,

and underwater surveillance. The AUV must be capable of

following a pre-programmed route to a designated target area,

perform its mission and surface for recovery and subsequent

data extraction. In response to the Navy's interest in the

AUV, a great deal of research has been conducted at NPS,

resulting in the construction of a small-scale prototype

vehicle.

This work addresses the real-time implementation of a

depth controller for the prototype vehicle. In designing a

depth controller for the AUV, there are a number of associated

problems which are of notable concern. First of all, the

equations of motion of the submersible are determined by the

nonlinear hydrodynamic forces of the vehicle which are

difficult to approximate by conventional means. Also, the

dynamics change under varying operating conditions such as

speed and vehicle configuration. In addition, the measurement

hardware associated with this particular vehicle produce a

state measurement which is corrupted with an undesirable time-
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varying bias. This time-varying component cannot be modeled,

and must be approximated, then removed from the measured

signal. The various problems associated with the dynamic

modeling of the AUV illuminate the need for an adaptive system

identification approach. In this work, the RLS (Recursive

Least Squares) algorithm was used to determine the dynamic

model of the system. The RLS algorithm accepts measurements

of the system input and output and returns the model

parameters which, when applied to the model, minimize the

error between the estimated and measured system output. This

approach provided an accurate representation of the varying

dynamics of the system by accounting for the relationship

between the input and related output of the system under all

operating conditions.

Once the system states and parameters have been estimated,

they are applied to a control law in order to provide the next

input signal to the system. The controller used in this work

is known as a Variable Structure (VS) controller. VS controllers

have recently been proposed for use in the control of

submersibles and other vehicles with nonlinear or unmodeled

dynamics [Ref.1]. The variable structure technique

implemented in conjunction with an adaptive state estimation

algorithm, guarantees robust trajectory control. The remainder

of this work addresses the detailed development of the

forementioned concepts as well as their physical
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implementation. A digital-control program will be developed

which provides a diveplane command to the AUV, based on

sampled voltage signals representing the states of the

vehicle. This thesis is organized to represent the logical

progression of the development of the control program from

theoretical conception to implementation. Chapter II provides

a detailed discussion of the unique dynamics associated with

the AUV. Additionally, a linearized model of vehicle dynamics

in the vertical plane is developed. Chapter III addresses the

design of an adaptive state estimation routine, which provides

estimates of the system states needed for feedback. In

Chapter IV, the theory supporting the development of the

variable structure controller is discussed, and the resulting

controller design is tailored for specific application in the

AUV depth control system. Chapters V and VI detail the

implementation of the developed control concepts through

discussion of the hardware configuration and digital program

development, respectively. The experimental results of the

control process are presented in Chapter VII. The results

provided by the parameter estimation routine and controller

are segmented to allow for independent analysis. Chapter VIII

summarizes the performance analysis of the depth control

system, resulting in the statement of conclusions regarding

the performance of the developed control process.
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II. ArUV DYNAMICS

A. GENERAL DESCRIPTION OF THE AUV

The AUV considered in this research is 30" in length, with

a rectangular body cross section as depicted in Figure 1

[Ref.2]. The vehicle is equipped with twin screws to provide

propulsion as well as three sets of control surfaces: rudder,

bow planes, and dive planes. The two rudders operate in

tandem to control the direction of forward motion of the

vehicle. The bow planes ensure that the vehicle maintains a

minimum roll angle via symmetrically opposed operation, while

the diveplanes control the vehicle's depth. In addition,

sway

pitch

rollsurg *- -yaw

heaue

Figure 1 Sketch of the AUV Model
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the AUV is equipped with a depth cell which provides depth

measurements, as well as three rate gyros. The pitchrate,

rollrate, and yawrate gyros are positioned within the vehicle

in such a way as to provide for measurement of vehicles

movement in the pitch, roll, and yaw axis.

B. DETERMINATION OF THE DEPTH CONTROL MODEL

Mathematical models based on the equations of motion for

a body of revolution encompass six degrees of freedom of

movement referenced to both the body-fixed coordinate system

and the inertial reference frame [Ref.3]. The specific

coordinates are represented in Figure 1 and listed below as

follows:

u - surge rate x- surge

v -sway rate y -sway

w - heave rate z - heave

p -roll rate p -roll

q - pitch rate 0 - pitch

r - yaw rate - yaw .

The development of the hydrodynamic model is based on the

Navy's SDV-9 Swimmer Delivery Vehicle, and is detailed in Ref.

3 and Ref. 4. In designing a depth-control system, we would
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intuitively be concerned only with depth, pitch, and

pitchrate. Due to the fact that the AUV is a MIMO (Multi-

input, Multi-output) system, however, we expect some degree

of cross-coupling between the different inputs and outputs of

the system. This vross-coupling effect can be seen, for

example, when a rudder command is applied to the AUV while

operating at a non-zero roll angle. In response to the rudder

command, the vehicle would certainly experience a change in

depth together with the intended change in direction. In this

situation, the depth control system would generate and apply

a signal to the diveplanes in order to maintain the desired

depth. Schwartz [Ref.3] addressed this cross-coupling and

estimated the effect by applying various diveplane, bowplane,

and rudder commands to the vehicle while observing the effect

of these commands on all system states. For the particular

shape of the vehicle considered, analysis of this data led to

the conclusion that cross-coupling between the system inputs

and outputs is not of signific-nt concern if the bowplane,

diveplane, and rudder are operated independently. It is by

this assumption of independence that we can model the dynamics

in the vertical plane as a SISO (Single-input, Single-output)

system.

C. DERIVATION OF THE MATHEMATICAL MODEL

Detailed mathematical models of submersibles are available

from many sources. Basically, they are derived from laws of
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hydrodynamics and lead to very complex sets of nonlinear

differential equations. A simpler class of models can be

obtained by observing the behavior of the state vector under

several command inputs. In a diving maneuver, the system

states of importance are pitchrate (Q), pitch (9), and depth

(Z), while the command is the diveplane angle (6). Observing

the behavior of the vehicle under consideration, the dynamics

between the diveplane angle (6), the pitchrate (Q), and pitch

(G) are approximated as

Q(t) = aQ(t)+ b6(t) (1)

b(t) = Q(t) (2)

while the model for depth (Z) becomes,

z(t) = -Vsin(o(t)) (3)

with V being the forward velocity of the vehicle.

Justification for (3) can be seen by examining the

proportionality between the velocity of the vehicle and the

rate of change of depth. The velocity of the vehicle can be

expressed as a vector of known magnitude, directed at an angle

0, relative to the horizontal plane. By simple vector

analysis, the velocity vector can be resolved into both

horizontal and vertical components for a given 9 and velocity.
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The resolvant vertical component of the velocity vector is

then taken to be the rate of change in depth as in (3).

The parameters a and b are dependent on several factors,

such as operating conditions and velocity. To give a general

idea of the magnitude of these parameters for small pitch

angles, (1) through (3) are written in state space form as,

Q =-18 0 0rQ1 2.5311,= 0 0o[e]+[ o (4)0-:. o 1z 0

with Q in radians/second, 0 in radians, and Z in feet. This

model applies only to the specific vehicle under study,

cruising at a velocity of 2.1 feet/second. If the basic

shape, mass, or velocity of the vehicle changes, the result

will be a corresponding change in the parameters which

represent the dynamic model of the system. For this reason,

the conventional approach to modeling the system dynamics is

generally considered unsatisfactory. The parameter estimation

routine implemented in this work is an adaptive scheme which

accounts for the changing dynamics of the system. This

adaptive parameter estimation approach is discussed in detail

in the following chapter.
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III. ESTIMATOR DESIGN

A. BACKGROUND

A state estimator, or observer, is one of the fundamental

elements of any practical feedback-control system. In order

to stabilize the dynamics of a system, the system states must

be available for measurement or otherwise be estimated by a

suitable algorithm. In designing the AUV, certain limitations

were placed on the selection of sensor hardware which made the

direct measurement of all system states impossible. Ideally,

the AUV would be equipped with a position gyro to measure the

vehicle pitch angle, as well as a pitchrate gyro and depth

cell to measure vehicle pitchrate and depth. Unfortunately,

the inclusion of a pitch gyro was impractical due to both the

unit cost and space requirements for installation. The

quality of the pitchrate gyro selected was also limited by

unit cost. The pitchrate gyro selected was a low quality unit

typically found in hobby shops. As a consequence, the

pitchrate gyro produces a sensor signal corrupted by a slowly

varying DC bias voltage. In summary, due to the physical

limitations of the sensors used, depth is the only state which

is accurately measureable.

B. GENERAL DESIGN APPROACH

To generate estimates of the remaining two states,

required the design of a state estimator which accepts depth

9



A A

am z

A zRLS Q LME A

Figure 2 Estimator Design Problem Division

and corrupted pitchrate measurements as inputs and generates

accurate estimates of all system states at the output. The

general approach, depicted in Figure 2, is to use a hybrid

design encompassing both RLS (Recursive Least Squares) methods

to estimate the bias embedded in the pitchrate gyro signal,

as well as LQE (Linear Quadratic Estimator) techniques to

provide a pitch estimate given an estimate of pitchrate and

the measured depth of the vehicle.

C. OVERVIEW OF THE RLS ALGORITHM

Consider a first-order SISO system with unknown dynamics.

Let the input sequence to the system be u(t) and the system

output be y(t). The plant of such a system can be modeled by

10



a first order difference equation:

y(t) = ay(t- 1)+ bu(t - 1) (5)

y(t) = [y(t - 1) u(t - 1)[](6)

y(t) = dOT(t-1)g (7)

where OT is the regression vector containing the history of

the system inputs and corresponding outputs, and I is the

parameter vector containing the system parameters a and b.

Since the dynamic model of the system is fully describable by

the parameters a and b, our objective is to estimate the

parameter vector I from the available input and output data.

In order to accomplish this, the system is first modeled in

state space form as,

9f+1 = Of + WS (8)

y, = HA8 + V8 (9)

where HT is the regression vector 4 (t-). The term wt in (8)

accounts for any drifts in the parameters which occur through

time, and Yt is the Gaussian measurement noise. Let us define

the autocovariance of wt and vt respectively.

S, ,o ] (10)
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Rt=E[v~vT] (11)

The next step is to derive a predictor equation based on

the system model. The vector L is known to contain the

constant parameters a and b. Therefore, the predictor

equation for L is,

61 (12)

Accordingly, the predicted output of the system is determined

by the product of the transition matrix HT and the predicted

a vector.

S= , ,_ (13)

In this particular framework, the Kalman filter algorithm

is a least-squares approach to state estimation. The

predicted output of the system is computed using (13), and

then compared to the actual measured output to determine the

prediction error. The Kalman filter serves to minimize the

variance of this prediction error through repeated

applications of the corrector equation.

= + Kt(y, (14)

where,

= E[11y 11,y, 21...,yo] (15)
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The Kalman gain vector K. is dependent upon the

reliability of the estimation and is determined as,

K PI1 09(16)K=R,+ 0_T p

where, for a system of order n, Kt is a (n x 1) vector and Pt

is the (n x n) matrix representing the accuracy of the current

parameter estimation. As the number of recursions increases,

the magnitude of the prediction error decreases and the values

of the Pt matrix become correspondingly smaller. The obvious

result being that as the prediction becomes more accurate, the

system model equations more closely approximate actual system

response, resulting in an improved system model. The

estimation error covariance matrix is computed, then updated

after each iteration using the following formula [Ref. 5].

- -1of of P-1 + s, (17)

The initial condition P(O) is the covariance of the error in

the initial state, and represents the a-priori information

available concerning the estimated parameters.

D. PITCHRATE BIAS ESTIMATION

Application of the RLS algorithm to the particular case

of estimating a signal with an embedded bias proved to be only

slightly different than that of the general case. Let us

13
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Figure 3 AUV Dive System Representation

consider the ARMA (Auto-Regressive Moving Average) model

between the diveplane input and pitchrate, as shown in the

system representation of Figure 3. Note that the system

cannot be modeled by (5) in its present form due to the added

bias. Through application of the principles of the RLS

algorithm; however, the bias can be accurately estimated. To

accomplish this, the ARMA model of the difference equation

from the diveplane input to the pitchrate output is introduced

as it would be with no bias present,

Q(t) = aQ (t - 1) + ib(t - 1) (18)

where a and q are the discrete equivalents of the continuous

14



time system parameters a and b. If we let Q(t)=Qm(t)-B(t);

after some manipulation, the dynamic model in terms of Q,

becomes,

Q=(t)= aQ.(t-1)+ 78 (t- 1)+ (p(t)-afl(t- 1)) (19)

where B is the is the discrete-time bias term. Since B is

piecewise constant over a small interval, (19) may be further

simplified by grouping all terms which are a function of B

and replacing them with a single constant term 7, as follows.

Q(t)= aQ.(t-1)+73(t-1)+Y (20)

With this final simplification complete, the system model from

the diveplane input to the bias corrupted pitchrate output Qm

is expressed as,

Q. (t) =[Q. (t -1) 3(t -1) 1][a (21)

Note that the I vector does not contain the bias term B, that

we wish to estimate. The I vector, however, does contain the

parameter 7 identified earlier as,

y=P(t)_-ap(t-1) (22)

From the estimate of -y, the' discrete bias term B must be

approximated, so that it can be later subtracted from the

estimated corrupted pitchrate measurement. To explain this

15



process, let us recall that this approach to bias estimation

was based on the fact that B could be approximated as a

constant term over a small time interval. With this

assumption in mind, we can approximate that B(t-1) is

approximately equivalent to B(t), simplifying the relationship

to

= - a)P(t-1) (23)

where 7 and a are estimated components of L. The discrete

bias term B may now be expressed as a function of 7 and a;

_(t) = 1 a) (24)

The RLS algorithm can now be applied in this case exactly as

demonstrated earlier for the generic case. After each

iteration of the algorithm, a current estimate of the

parameter vector I is generated. Using the estimate of I,

the corrupted pitchrate and bias term are estimated. The bias

is then subtracted from the corrupted pitchrate estimate to

yield a pure pitchrate estimate. [Ref. 5]

E. LINEAR QUADRATIC ESTIMATOR DESIGN

The estimator design, to this point, provides !nly an

estimate of the pitchrate by removing the bias. In order to

control the depth of the AUV, all states must be available

for feedback. To generate estimates of vehicle pitch, let us

consider the reduced system depicted in Figure 4. The

16
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Figure 4 Second Order System Model

pitchrate signal Q, which is the output of the RLS estimator,

is treated as an input to the second order system relating

pitchrate to depth. Throughout the design of the LQE we need

only to be concerned with this portion of the system.

To begin the analysis, the reduced system is represented

in the form,

[~][+ 1]~ 0 [cot[ (25)

y=[O 1][ Zv (26)

where wt is the process noise and Vt is the measurement noise,

each with a zero mean value. Furthermore, let the noise

covariances be expressed as in (27) and (28) [Ref.6];

17



E[coof] = S, (27)

E[ V, VT] = R (28)

The values of the noise covariances are selected by the

designer to maximize the performance of the estimator. In

this design, several combinations of S. and R were specified

and the resulting Kalman gains were computed using the

software package MATLAB. The various sets of Kalman gains

were then applied to the LQE in order to evaluate the

performance of the estimator. The Kalman gains which provided

the best performance were then implemented in the digital

program through use of the equation,

X=AX+Bu+K(Y-c1) (29)

where the estimation error is,

y-C. (30)

In the following chapter, the estimated states provided by the

state estimator will be used in a nonlinear feedback control

configuration to generate the closed loop input to the system.

is



IV. VARIABLE STRUCMURE CONTROLLER DESIGN

A. BACKGROUND

The dynamics of autonomous underwater vehicles are complex

and highly nonlinear by nature. The hydrodynamic forces which

govern the behavior of such a system are dependent on

parameters such as vehicle speed, acceleration and inertia.

In addition, there are a variety of unmeasurable disturbances

which add to the uncertainty of the vehicle response. In

order to design a robust controller using linear control

techniques, it would be necessary to devise several system

models and associated control schemes in order to represent

the system under the varying operating conditions. For this

reason, modern linear-control techniques generally prove to

be too complex and computationally intensive to provide

adequate control of underwater vehicles.

One recently developed control methodology which deals

directly with the control of nonlinear systems is the variable

structure controller. Using the variable structure approach,

robust trajectory control is guaranteed despite the presence

of unmodeled or time-varying system dynamics. The remainder

of this chapter deals with the development and implementation

of such a controller.

19



B. VARIABLE STRUCTURE CONTROLLER DEVELOPMENT

Throughout the development of the variable structure

controller, the system to be controlled is expressed in state

space form as,

X = AX + B(0 + Af(X,, 0 )) (31)

where the uncertainty of the system model is expressed as the

quantity Af(x, S). This uncertainty can arise from a variety

of factors such as the presence of unmodeled dynamics in the

system. The origin of this uncertainty is of little concern

in the development of the variable structure controller. In

the development of the variable structure controller, we

assume knowledge of an upper bound of the disturbance term

F(x,6,) as,

I)Af(X,35)Ii! F(X,50) (32)

with F(x,6o) known for all x and 60. On the basis of (31) and

the known bound on af, a controller can be designed to drive

the state vector X(t) to within a finite bound around zero.

In order to accomplish this, let QT be a left eigenvector of

the matrix A, corresponding to a marginally stable eigenvalue

A such that

CTA =ACT (33)

20



By multiplying both sides of (31) by CT and substituting (33),

we obtain

CTX = ;LC T X + C TB(60 + Af(X, 60 )). (34)

Combining terms in (34) results in the assignment of the new

variables

aCt) = CT X(t) (35)

y = CTB. (36)

Additionally, the feedback law selected to generate the closed

loop diveplane command is

60 = -K(x) Sign(O(t)) (37)

where K(x) is a positive scalar function, such that K(x)?F(x).

Making the substitutions of (35) and (36) into (34), yields

d(t) = Aa(t)+ y(6 0 + Af(X,6 0 )) (38)

where the diveplane command, 6. is determined by (37). With

the system expressed in the form of (38), it can be proven

that

Lima(t) = 0 (39)

1.-
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where a(t) represents a linear combination of system states.

(Ref. i] Note in (39), that a(t) will approach zero within

a small bound, as determined by the magnitude of Af.

Examining the development of the controller at this stage,

we can demonstrate why this method is generally referred to

as the sliding mode approach. First, note that (39) implies

that the state vector X(t) tends toward the surface

CTX(t) = 0 (40)

which is a hyperplane in the n-dimensional space of the state.

The plane of the surface o(t) becomes a switching line as

shown in Figure 5, and the control law, (37), assumes

eifferent polarities according to which half plane the state

is in. Once the state is on the switching line, it remains

there by virtue of (39). By properly selecting the vector C

we obtain

Lim X(t) = 0* (41)
I--.

To prove this claim, we will examine the derivative of the

quantity aZ which is indicative of the slope of o(t) vs. time.

I d (C2 (t)) = a(t) d(t) = a~)A~)+ 78 + 'Af] (42)
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Figure 5 Representation of Switching Line Behavior

Applying the feedback law, (37), and imposing the conditions

A=O (marginally stable) and K(x);_Iifjj for all x, we obtain

a(t)&(t) = a(t)(-K(x) Sign(S(t) + Af)) (43)

a(t)&(t) -K(xa(t)+cYQ)Af. (44)

Examining (44) in light of the imposed conditions, it is

apparent that the slope of a2(t) vs. time is always negative.

The most important result of this conclusion is that as the

states of the system track along the sliding surface, they

will ultimately converge to zero regardless of which half-

plane the system is operating in. [Ref. 7]
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C. VARIABLE STRUCTURE CONTROLLER IMPLEMENTATION

The controller developed in the previous section assumes

that the nominal linear model of the system (not accounting

for disturbances) is

X = AX +Bu (45)

where the system is marginally stable. Placing the constraint

of marginal stability on the system ensures that the sliding

surface CTx - 0, with CT being a left eigenvector of A. From

the previous discussion, the states of the system, X(t), will

follow the switching line to 0.

Before applying the variable structure technique to the

AUV, the system model must be partially compensated as shown

in Figure 6. To accomplish this, an additional feedback loop

is implemented to stabilize the dynamics from diveplane

command to pitch. The value of the feedback coefficient was

selected to provide two eigenvalues at -0.9 and the remaining

eigenvalue at the origin, making the system marginally stable.

Additionally, the depth error (rather than depth) is included

in the state vector so that the state vector becomes,

X (46)

where Zd is the ordered vehicle depth.
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Using the partially compensated model, the variable

structure controller implementation can be applied to the

system as previously discussed. Using the MATLAB software

package, the left eigenvector of the system, corresponding to

the matrix A of (45) and the eigenvalue A = 0, is computed as

CT = [0.5556 1.0 0.2143] (47)

leading to the definition of the signal a(t),

[Q(t- 1)1
a(t)=[0.5556 1.0 0.2143]| (t-1) (48)

[e(t-1) J
corresponding to the sliding surface. One disadvantage

associated with using the signum function to generate the

diveplane command 6, is that the controller exhibits excessive

diveplane chatter once the vehicle has reached its steady-

state operating depth. To eliminate this problem, the satsign

function as illustrated in Figure 7 can be used in place of

the signum function. As a result, when the vehicle is near

its ordered depth and both pitch and pitchrate are approaching

0, the controller will enter the linear region of operation

ranging from -Aa to Au, where Au is a parameter specified by

the designer. Outside this linear region, the diveplane

command saturates as it would using the signum function. A

large negative value of a will result in a full-scale positive
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diveplane command being asserted with the effect of driving

a into the linear region of control and ultimately to 0. The

value of the diveplane command of the original system is

derived from the augmented diveplane command, 6,, through use

of the equation,

6= 6o-0.320 (49)

The feedback coefficient of 0.32 in (49) was selected to

ensure that the poles of the partially compensated system were

placed at -0.9.
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The only task remaining before the controller can be

physically implemented is the selection of the variables K(x)

and Ao in Figure 7, which greatly affect the response

characteristics of the AUV. These parameters were selected

through a trial-and-error approach during the testing phase

of this work. The process used and conclusions regarding the

selected values will be discussed in the Chapter VII.
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V. ANALOG SIMULATION

A. GENERAL

As previously discussed, the AUV under study is equipped

with a pitchrate gyro and depth cell to provide measurements

of the modeled states of the system. The underlying objective

of this research has been to use telemetry data from the AUV

to generate a state feedback command in order to control the

depth trajectory of the vehicle. All procedures to this

point have been based on the assumption that the required data

is available for processing by the control program. Contrary

to this assumption, it was discovered during testing that the

pitchrate gyro had become inoperative. Repeated attempts were

made to correct the problem with no results.

With no other options available, the decision was made to

simulate the AUV in a diving operation using an analog

computer. In order to simulate the AUV dynamics on an analog

computer, the linearized differential equations describing the

system have been implemented through the use of integrators,

amplifiers, and attenuating potentiometers. Although this

method produces a reasonably accurate simulation of the

vehicle dynamic response, the nonlinear components of vehicle

motion, such as changes in speed during maneuvering, cannot

be accounted for. On the other hand, there are many

substantial advantages associated with the use of an analog
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simulation. Since all system states are generated by the

analog computer, they are also available for comparison with

state estimates generated within the control program. In

addition, the pitchrate bias can be injected into the

simulation model as a known quantity rather than as an unknown

disturbance, allowing for accurate performance analysis of the

RLS algorithm.

B. DESCRIPTION OF THE ANALOG SIMULATION

The analog computer used consisted of an array of

integrators, amplifiers, and potentiometers as well as a

multi-position voltmeter which is capable of displaying

voltage measurements at various system nodes. All amplifiers

and integrators operate within a voltage range of ±10 volts.

Integrators must be used in conjunction with an amplifier

which is capable of providing amplifications of 0.1, 1.0, and

10.0. Negative feedback between the integrator and its

associated amplifier provides stabilization. Amplifiers can

also be used independently when configured to operate as

either a summing junctions or inverters as required. The

potentiometers are used as attenuators and provide

amplification of their inputs only when used in series with

an amplifier. (Ref. 8]

In developing the analog simulation of the AUV, the

linearized equations of motion were programmed into the analog

computer as depicted in Figure 8. The amplification applied
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to each integrator has been determined based on the desired

conversion factor from volts to physical units for the system

states. To explain how these scaling factors were selected,

let us begin our analysis at the system output. With the

maximum output of each amplifier being 10 volts, the

corresponding depth scale of 1 volt equals 1 foot is assigned,

allowing for a maximum model depth of 10 feet. Moving

backwards through the system diagram we divide the unit

conversion factor by the amplification factor of each

amplifier and multiply by 10 for each attenuating

potentiometer. This procedure is repeated to determine the

conversion from volts to physical units for each state as well

as the diveplane input. The voltage values of the system

states are sampled at a frequency of 20 Hz by the A/D (Analog

to Digital) converter. The previously determined conversion

from volts to physical units is applied to these quantities

by the digital control program in order to determine the

appropriate physical quantity in radians, radians/sec, etc.

Likewise, the diveplane command is converted to volt units

prior to being applied to the D/A (Digital-to-Analog)

converter.
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VI. DIGITAL PROGRAM IMPLEMENTATION

A. GENERAL

Thus far, the basic principles and theories upon which

the control system design is based have been addressed. The

model of the AUV dynamics has been presented and related

nonlinearities, as well as model uncertainties, have been

discussed. Additionally, a state estimation methodology was

identified which addresses the unique parameter identification

problems associated with the AUV. Finally, a controller

design has been developed which guarantees robustness in the

presence of unmodeled nonlinearities in the AUV dynamics.

Implementation of the design methodology requires a digital

algorithm which accepts the state measurements and desired

vehicle depth as inputs and generates the correct diveplane

command to be applied to the vehicle.

The programming language selected for use in implementing

the digital program was Turbo Pascal version 3.0. Although

more powerful languages are available for this application,

Turbo Pascal has been selected due to its compatibility with

existing hardware used in the implementation. The digital

autopilot program is contained in the Appendix.
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B. DIGITAL/ANALOG INTERFACE

Before addressing the development of the digital control

program, it is necessary to discuss the inter-relationship

between the digital controller and the analog simulator.

Control systems such as the one developed are termed sampled

data control systems. This distinction arises from the fact that

a digital controller is used to control a system which is

operating in continuous time. In the specific case of the

AUV, the system states are sampled at a predetermined rate

with their respective values held constant between sample

intervals. The digital control program must then access these

sampled values and process them in order to determine the

correct diveplane command to be applied. This interface

between the digital computer and the AUV is accomplished

through the utilization of both hardware and software.

The data acquisition is implemented using the DT-2801 data

translation board. The DT-2801 consists of 3 A/D channels and

1 D/A channel which are accessed by reading data from or

writing data to a specified register. The sampling frequency

of the DT-2801 is controlled by an external trigger input

operating at 20 Hz. The three A/D channels sample and

digitize the measured system values and stores the binary

equivalent values in an output register. The D/A channel

reads the digitized diveplane command from the specified input

register, converts the binary value to its voltage equivalent
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and applies the command to the rudders. The DT-2801 board

is controlled by its associated software routine, PCLAB.

Since the DT-2801 registers only accepts binary values as

inputs to its registers, a suitable algorithm must be

developed to convert binary to decimal for data entering the

program and decimal to binary for data applied to the D/A

input registers. Conversion of a physical value to a binary

value, or vice versa, depends on the number of bits of

resolution used by the converter. The DT-2801 is a 12-bit

converter and can, therefore, support 212 or 4096 Number of

Codes (NOC) [Ref. 9). The maximum bipolar voltage range of

the vehicle simulator is from ±10 volts. Using this

configuration, a voltage of -10 volts corresponds to a NOC of

0, and a voltage of 10 volts corresponds to a NOC of 4096.

The algorithm used to convert between digital and decimal

values is contained in Ref. 9, PCLAB Users Manual. The

implementation of the conversion algorithms is contained in

procedures "GET DIGITAL SENSORY DATA" and "GENERATE DIVEPLANE

COMMAND" in the digital control program.

C. DIGITAL PROGRAM DEVELOPMENT

The digital control program represents the innermost

functional level of the digital autopilot echelon. All other

components of the AUV controller serve only to provide

information to, or apply information from, the digital control

program. The digital program consists of several integrated
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modules called procedures, which function as either utilities

or provide application specific functions. Fortunately, past

research contained in Ref. 10, has resulted in the development

of all utility procedures encompassing data management, user

interface, as well as program flow. These various procedures

do not address the specific application of the controller

under development and are not discussed in this paper. The

focus of the remainder of this chapter will, therefore, be the

development of the procedures "EST" and "GENERATE DIVEPLANE

COMMAND", which address the implementation of the specific

state estimator and controller designs.

1. Procedure EST

The procedure EST provides an estimate of the system

states using a combination of the RLS algorithm and LQE as

discussed in Chapter II. The main body of EST predicts and

removes the bias from the pitchrate signal and applies the

pure pitchrate signal at the input of the LQE. To accomplish

this, EST employs a number of subordinate procedures, each

providing a specific function. The following paragraphs

describe the structure and use of each of the subordinate

procedures.

a. Procedure INITIALIZE ARRAYS

This procedure initializes all system variables

on the first call to the procedure EST. This is accomplished

by using a count variable in the main program. At the first

iteration of the program, the count variable is set to 1
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before the procedure EST is called. The program branches to

INITIALIZE ARRAYS, and the count is incremented upon return

to EST.

b. Procedure FILTER

This procedure provides lowpass filtering for both

the measured pitchrate and the applied diveplane command

before entering the RLS algorithm. Filtering the input anu

output data reduces the high frequency components of the

signals which results in a greater speed of convergence of

the RLS algorithm. Filtering both the input and output data

has no effect on the accuracy of parameter estimation.

c. Procedure UPDATE

UPDATE is used to form the new regression vector

of input and output data. As the newest sample values are

read, they are placed in the vector 4, and the current values

are deleted. This vector 4 is later used in predicting the

next set of outputs from the RLS algorithm.

d. Procedure KGAIN

This procedure calculates the Kalman gain matrix

which is to be applied in order to minimize the variance of

the estimation error. In order to accomplish this, KGAIN

accepts as inputs, the regression vector 4, the past error

covariance matrix P, and the previously calculated Kalman gain

matrix K. In the process, the matrix P is updated to reflect

the degree of estimation error present. As the estimation

process is repeated, the values of the P matrix decrease which

37



results in smaller Kalman gains being applied to the corrector

equation.

e. Procedure NEWEST

NEWEST essentially implements the corrector

equation resulting in a new predicted parameter vector j. The

prediction error, or innovation, is first calculated and the

Kalman gains are applied to this quantity. The past

prediction of the parameter vector is then updated by the

calculated correction value. The K matrix, provided by the

procedure KGAIN, minimizes the error between the predicted

output and actual output. After repeated application of the

corrector equation, the prediction error approaches 0 and the

parameter vector I approaches the correct steady state values.

f. Procedure INNERPROD

This procedure produces the current output

estimate through the product of the regression vector 4 and

the predicted parameter vector §.

2. Procedure GENERATE DIVEPLANE COMMAND

The procedure GENERATE DIVEPLANE COMMAND calculates

the diveplane command using variable structure controller

technique. The required code is short and simple, requiring

little explanation. This procedure calculates the scalar

value a through the vector product of the left eigenvector of

the system and the estimated state vector. The diveplane

command for the augmented system, 6,, is then generated by

applying a scaling factor to satsign(a). The satsign function
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is implemented using the subordinate program function "SAT".

Applying the relationship, 6 = 6, - 0.320, results in the

diveplane command for the original system. At this point, a

software limit of 0.4 radians is placed on the diveplane

command in order not to exceed the physical travel limit of

the diveplane actuators. The limited value of 6 is then

converted from radians to a voltage equivalent. The

conversion from the decimal voltage value to the binary

equivalent is performed by another subordinate program

function, "CONVERT ANALOG 2 DIGITAL". Finally, the binary

equivalent of the diveplane command is stored in the D/A

channel 0 input register before being applied to the vehicle

diveplane.

D. DESCRIPTION OF PROGRAM FLOW

The modular design approach of using separate procedures

and functions to implement the digital autopilot program

significantly simplifies the design process. However,

evaluating procedural dependencies and program progression are

made more difficult by this approach. Figure 9 illustrates

the conceptual flow of the digital autopilot program.

Although not all procedures are included, those which are

crucial to understanding the operation of the control system

are labeled in Figure 9, and their functions described below.

* GET TARGET DEPTH - Upon entering the program control
loop, the user is prompted to enter the desired target
depth of the vehicle in feet. The desired depth is then
used to calculate depth error.
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Figure 9 Conceptual Flow oi Digital Control Program

RUNMODE SCREEN - Writes vehicle parameters and lists user
options on the screen. Information is updated at
periodic intervals selected by the programmer.

"GET DIGITAL SENSORY DATA - Reads digitized sensory data
from A/D data registers. Data is converted to physical
units and stored for processing by the control program.
The process is coordinated by PC-LAB software.

"GENERATE DIVEPLANE COMMAND - Computes diveplane command,
digitizes this value, and stores result in D/A input

register.

* EST - Provides prediction of system states.
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VII. EXPERIMENTAL RESULTS

A. GENERAL

This work has been concerned with the theory and

application of various control concepts which have resulted

in the development of an integrated state estimation and

control methodology for the AUV. Throughout the development

of the estimator and controller, a number of variables which

have an effect on controller performance have been left

undetermined. This chapter details the process which lead to

the selection of these variables as well as the final result

of depth controller implementation.

B. RLS ALGORITHM RESULTS

The RLS algorithm was designed to provide crucial

information pertaining to the pitchrate of the vehicle. With

no pitch measurement available, the determination of vehicle

pitch was also dependent on the RLS algorithm. To evaluate

the performance of the RLS algorithm, the analog simulator was

programmed with the continuous time coefficients which express

the lag relationship between diveplane command and pitchrate.

The values of the zero and pole were 2.53 and 1.8 respectively

(representing vehicle dynamics at 2.1 ft/sec). The discrete

estimates of the lag coefficients generated by the RLS

algorithm are the first two elements of the parameter vector

.. By comparing these estimates to the corresponding discrete
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equivalents of the lag filter coefficients, the performance

of the RLS algorithm was examined. Figure 10 represents the

plot of the estimated discrete equivalent of the pole of the

model. Note that the value converges to 0.9 in approximately

four seconds. The correct discrete value of the pole is

0.9143. The RLS algorithm converges to an extremely accurate

estimate of the system pole in a reasonable amount of time.

The estimated discrete equivalent of the zero, as shown in

Figure 11, converges to a value of 0.139 in approximately

seven seconds. The correct discrete value of the zero is

0.127. The estimate of the zero is not as accurate as that

of the pole, which is generally the case for the RLS

algorithm.

Although the approximation of the discrete system

parameters may prove to be important in the determining the

dynamic model of future vehicle designs, the most important

objective in this work is the determination of the bias

component of the pitchrate signal. The bias was simulated as

a DC voltage added to the pitchrate voltage output of the

analog simulator. Figure 12 represents the bias estimate for

the system with an injected bias of 0.2 volts. The RLS

algorithm produced a bias estimate which converged to the

correct value of 0.2 in approximately eight seconds.

Different values of pitchrate bias, ranging from one to three

volts, were injected into the simulation and the corresponding

bias estimate was observed. Varying the magnitude of the
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pitchrate bias produced no significant variations in the

accuracy or convergence time of the algorithm.

After estimating the pitchrate bias, it was removed from

the measured pitchrate signal in order to yield a pure signal

for state feedback as well as input to the LQE. Figure 13 is

a plot of the measured pitchrate and the estimated pitchrate

with the bias removed. As is evident from the plot, the bias

used in this case was 0.2 radians/second. The results clearly

demonstrate that this approach effectively removes the bias

from the measured pitchrate signal.

C. RESULTS OF LQE IMPLEMENTATION

Design and implementation of the Linear Quadratic

Estimator was intended to be the least difficult portion of

the estimator design. Upon experimentation with the

controller design, it was discovered that this was not the

case. As previously mentioned, the feedback gains applied to

the pitch and depth estimates were determined by the ratio of

the covariance of system noise to measurement noise specified

by the designer. In this application, an increase in this

ratio suggests less confidence in the pitchrate input to the

LQE rather than the measured output (depth) of the vehicle.

The specified noise covariances do not represent the actual

noise present in the corresponding signals, but only providea

means of determining the optimal steady-state Kalman gains to

be applied to the observer. The general approach was to
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generate several sets of Kalman gains associated with

different noise covariance combinations and implement the

gains which provided the best result. The results achieved

through this appoach were less than ideal. Selecting a small

ratio between the input noise covariance (St) and measurement

noise covariances (Rt) resulted in an observer which was

incapable of tracking the pitch of the vehicle. As the noise

ratio was increased, the tracking performance of the observer

increased substantially; however, the observer became too

sensitive to estimation error. The effect of varying the

ratio between S. and Rt is demonstrated in Figure 14 and Figure

15. In Figure 14, St and Rt were specified to be 6.0 and 1.0,

respectively. Note that the response of the observer is too

slow to provide for accurate tracking of the vehicle pitch.

In Figure 15, St is 100.0 and Rt is 1.0, resulting in increased

magnitudes of the corresponding feedback gains. As can be

seen from this result, the increased magnitude of the Kalman

gains yielded a faster observer which tracked pitch

considerably better than the case represented in Figure 14.

On the other hand, the negative effect of the increased gains

on the performance of the observer were equally obvious. As

the gains were increased, the observer became extremely

sensitive to any error between the estimated depth and the

measured depth of the vehicle. Although this error is

minimal, it is amplified by the feedback gain applied to the

observer resulting in a noisy pitch estimate. However, it was
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determined through further experimentation that the

sensitivity of the observer had little affect on the depth

trajectory of the vehicle. As a consequence, the case

represented in Figure 15 was selected in the final

implementation of the state estimator.

D. VARIABLE STRUCTURE CONTROLLER RESULTS

Implementation of the variable structure controller

involved extensive experimentation in order to determine the

best combination of selectable controller parameters. The

parameters in question are the saturation value, K, of the

satsignum function and the width of the linear region of

operation, au. Since the diveplane command is ultimately

limited to 0.4 radians by physical considerations, varying K

has little effect on the diveplane command applied to the

vehicle. The value of K was set to a value of two for the

controller implementation. In contrast, the width of the

linear region of operation greatly affects the response

characteristics of the controller. Selection of a small value

of &a results in a more rigid controller characterized by

longer periods of diveplane saturation as well as diveplane

oscillations as the vehicle maintains the commanded depth.

The effect on the vehicle depth trajectory was an overshoot

of the desired depth followed by repeated corrections. Once

attained, the commanded depth was maintained at the expense

of continuous diveplane commands. In contrast, large values
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ot Aa resulted in a sluggish vehicle response. The diveplanes

rarely entered the saturation region and therefore, the

vehicle was slow to reach the desired depth. Once at the

ordered operating depth, the vehicle was unable to maintain

depth within a reasonable degree of accuracy. The optimal

value of Aa was obtained through experimentation with

different values of Ao and evaluation of the corresponding

results. The underlying objective of the controller

implementation was to provide a robust trajectory to the

desired depth and maintain that depth with minimum diveplane

command applied. Figure 16 depicts the plot of the diveplane

command generated for a dive to five feet using 1.0 as the

selected value of Aa. The corresponding depth trajectory is

contained in Figure 17. Note that the diveplane is initially

saturated directing the vehicle toward the desired depth. As

the vehicle approaches the desired depth, the diveplane

command provides corrections to the vehicle trajectory. Once

achieved, the ordered depth was maintained with minimal

control input. The controller provided the best response with

ac set at 1.0 and, as a result, this configuration was used

in the final controller implemertation.
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VIII. CONCLUSIONS

The objective of this work has been to design a digital

controller which provides robust depth control of an AUV. The

success or failure of this research is based on the ability

of the design to provide accurate estimates of the system

states, and generate a closed-loop control input which is a

function of the states. Although the digital control program

was tested using an analog simulation rather than the intended

prototype vehicle, the results obtained provide for a

reasonably accurate analysis of the design concepts

implemented.

Having only specified the order of the linear model of

the system, the RLS algorithm estimated the model parameters

within a reasonable degree of accuracy and provided an equally

accurate estimate of pitchrate bias. Unfortunately, the

varying dynamics of the AUV could not be simulated using the

analog computer. As a result, the performance of the RLS

algorithm could not be evaluated under the conditions of

changing speed and acceleration which the vehicle is subjected

to during maneuvering. From the results obtained, however,

it would be reasonable to conclude that the algorithm would

perform satisfactorily under these varying conditions.
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The design of the pitch estimator was intended to be

simple while still providing a reasonable estimate of vehicle

pitch. As discussed in Chapter VII, the LQE did not perform

as originally intended. The estimator proved to be very

sensitive to measurement noise, resulting in a noisy pitch

estimate. The negative effect of the noisy pitch estimate on

system performance was realized as high frequency oscillations

in the diveplane command. Fortunately, the effect on the

resulting depth trajectory of the vehicle was minimal.

In the final analysis, the combination of an adaptive

parameter estimation technique and variable structure control

provided an effective means of vehicle depth control. Even

in the presence of considerable state estimation error

produced by the LQE, the variable structure controller

directed the vehicle along a stable trajectory to the desired

depth. Due to the flexibility of the controller design,

virtually any vehicle response characteristic can be obtained

by altering the controller parameters. Considering the wide

range of possible missions of the AUV, this particular

attribute of the variable structure controller might prove to

be useful.
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APPENDIX

DIGITAL CONTROL PROGRAM

($c-)
program AuvAutoPilot ( input, output );

( TITLE : AUV Automatic Control Program (AUTOCON3.PAS)
AUTHOR : J.M. WILLIAMS
APPLICATION : Test of real-time controller for the AUV
DATE : 29 Aug 1989

Project Description : This program implements digital
control of the NPS autonomous underwater vehicle (AUV) in
the vertical or dive plane. It samples vehicle sensor input
from three channels : depth, pitch, pitchrate. The depth
signal is then passed to a DepthError module which compares
the actual sensor depth with a model reference depth
simulated by a depthgain. An depth error voltage is then
generated and passed to a GenerateDivePlaneCommand module
which processes the error signal and sends out an
appropriate command to the diveplane actuators. The gains in
the algorithms reflect the discrete transfer function gains
for diveplane command response derived from vehicle
identification analysis. )

- GLOBAL DECLARATIONS---------------

const

(----------- Screen declarations---------------

xl = 5; ( Upper left corner : left edge )
yl = 2; ( Upper left corner : upper edge)
x2 = 75; ( Lower right corner : right edge)
y2 = 24; ( Lower right corner : bottom edge)

type
strl0 = string [10];
str60 = string [60];

var
hr,hr2,min,min2,
sec,sec2,hun,hun2 : byte;
seconds : real;
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----------- INCLUDED FILES Declarations-----------------

($I pcldefs.tp ) ( PC LAB Trubo Pascal routines.)

($1 pclerrs.pas ) ( PC LAB error code messages file.)

($Iinidac.auv
( This procedure initializes the DT 2801-A TO ZERO VOLTS AND
MUST BE EXECUTED BEFORE THE AUV IS HOOKED TO THE COMPUTER.)

($Igettime.auv )
( No arguments; returns hr, min, sec, bun : byte)

($Ishotmdff.auv }
( Input the output of TimeDiff.auv and this procedure
displays the time difference between the two most current
Get Time.auv results.

ShowTimeDifferene ( x:integer) . }

($Itimediff.auv)
{ Input: hr,hr2,min,min2,sec,sec2,hun,hun2 from two calls
of GetTime.auv and this returns the difference in
seconds as a REAL variable.)

{$Idrawbox2.auv)
( Input xl,yl,x2,y2 : integer to specify the corner limits
of the box. This procedure clears screen and draws a
rectangular box of specitied dimension using ASCII double
line characters.

($Iclrbox2.auv)
( Input xl,yl,x2,y2 : integer to specify the corner limits
of the box. This procedure uses a FAST means of clearing a
box of specified dimension. The box dimension should be
delcared as constants.)

($Iboxprint.auv )
{ Input the printrow, leftboxedge, rightboxedge : integer
and printstring :str6O. This procedure centerprints the
string in the box at the printrow specified without
overwriting the box border.)

($Ishowfast.auv)
( Input message : str6O, column,row : integer. To specify
the x,y position on the screen for a FAST message print.)

($Ikeyhit.auv)
( This is a boolean function which returns true or false if
key is pressed; it also returns keycode replies VAR reply,
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($Itabxy.auv)
( Input tabcol,tabrow : integer; like gotoxy)

(Iboxpause.auv)
( Input xpause,ypause : integer to specify where "Press any
key to continue" message is to be printed.)

($Igetkey.auv )
( Input as a string of chars, the set of acceptable replies;
ie 'YyNn'. This procedure waits until one of the acceptable
replies has been entered.)

($Iutils.auv )
( Included are some housekeepping and debugging routines.)

($Iconvadv.auv )
( Includes functions to convert depth,speed and pitchrate to
vehicle values. )

I ************* MAIN PROGRAMS PROCEDURES *************** )

************* USER INTERFACE MODULES **************** )

procedure MainMenu ( var reply : char );

( This procedure presents the AUV screen and solicits an
option to Run the AUV from the StatusAndCommand procedure or
to Quit.)

begin
repeat
clrscr;
drawbox2(xl,yl,x2,y2);
boxprint(yl+3,xl,x2,'N A V A L P 0 S T G R A D U A T

E SCHOOL');
boxprint(yl+5,xl,x2,'D E P A R T M E N T 0 F ');
boxprint(yl+6,xl,x2,'M E C H A N I C A L E N G I N E

E R I N G');
boxprint(yl+8,xl,x2,'AUTONONOUS UNDERWATER

VEHICLE');
boxprint(yl+l0,xl,x2,'DIGITAL AUTOPILOT CONTROL

PROGRAM');
boxprint(yl+12,xl,x2,'**************************');
boxprint(yl+15,x1,x2,'Do You want to RUN this program

. .') ;
boxprint(yl+16,xl,x2,'or Do You want to QUIT and return

to DOS ?');
boxprint(yl+20,x,x2,'>>>> ENTER Q OR R <<<<');
getkey ('QqRr',reply,reply2);

until ( reply in ('Q','q','R,'r'] ) and (reply2 =
chr(O));
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end;

procedure StatusAndCommand ( var mode : char );
{ This procedure begins the control program screen.)

var
mode2 : char;

procedure StatusAndCommandScreen;

( This is the status and control screen and solicits a user
input of F1 to RUN the program or Q to Quit and exit to the
main menu.)

( --------- StatusAndCommandScreen----------
begin

clrbox2 (xl,yl,x2,y2);
boxprint(yl+l,xl,x2,'AUV STATUS / COMMAND AND CONTROL

SCREEN');
boxprint(yl+2,xl,x2,'
boxprint (yl+7, xl, x2, "CHOOSE YOUR DESIRED CONTROL MODE

:1);
boxprint(yl+9,xl,x2,'ENTER KEY << F1 >> TO START

AUV CONTROL) ;
boxprint(yl+ll,xl,x2,'ENTER << Q >> TO QUIT AND

RETURN TO MAIN MENU');
boxprint(yl+16,xl,x2,'PRESS EITHER F1 OR Q');

end; (---------StatusAndCommandScreen ----------

********** CLOSED LOOP CONTROL ROUTINES **************** )

Procedure ClosedLoopControl;
{ This module comprises the closed loop control scheme.)

label 5;
label 1;
const

maxdepth = 33;
mindepth = 0;
updateincrement = 10;

type
try = array[1..10] of real;
activecontrolmode = ( run, reset, exit );
allowabledepthrange = mindepth. .maxdepth
auvattitude = ( climb, maintain, diving );
digitalintegerarray = array [1..3] of integer;

var
filename:string[14];
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filevar: text;

auvdepth, auvdepthvolts, auvspeed, auvp itch, yawrate ,diveplane,
auvspeedvolts, auvpitchrate, auvpitchratevolts, estdepth, err,
al, ac2, ac3, ac4, ac5, ac6, deptherrorvolts, targetdepthvolts,
biasi, divevolts, tgtnew, targetde-pth, spee ,: real;

adv : digitalintegerarray;
j,status,time : integer;
uiodereply,uaodereply2 : char;
activemode : activecontrolmode;
updatecounter, initial : integer;
depthrange : allovabledepthrange;
attitude : auvattitude;

procedure GetTargetDepth (var tgtdepth :real ;
var tgtdepthvolts : real )

(This procedure solicits the target AUV operating depth and
converts it to an AUV equivalent targetdepth analog voltage
and passes both of these parameters. )

begin I----------GetTargetDepth ----------

clrbox2 (xl,yl,x2,y2);
boxprint(yl+10,xl,x2,*ENTER THE A U V TARGET OPERATING

DEPTH');
boxprint(yl+ll,xl,x2,'NOTE : THE DEPTH SHOULD BE IN FEET

(0.0 - 10.0)');
repeat

begin
boxprint (yl+13,xl,x2,'ENTER THE TARIGET OPERATING

DEPTH ');
gotoxy (xl+33,yl+15);
read ( tgtdepth )

end;
until tgtdepth >= 0.0;

tgtdepthvolts := tgtdepth

end; (----------GetTargetDepth ------------
procedure RunModeScreen;

(This procedure displays the Closed Loop Control Screen in
the RUN XODE.

begin ------------ --- RuriModeScreen--------------)

clrbox2 (xl,yl,x2,y2);
boxprint(yl+l,xl,x2,'A UV S TA T US C CON T
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ROL S CREE');
boxprint(yl+2,xl,x2,?
boxprint(yl+4,xl,x2,'STATUS OF A U V OPERATING

PARAMETERS :1);
write (tabxy (xl+5,yl+6),'AJV DEPTH [feet] : )
write (tabxy (xl+5,yl+7),'AUV PITCH [rads] :
write (tabxy (xl+5,yl+8),'AUV PITCHRATE [rads/sec]:

I);

write (tabxy (xl+5,yl+9),'AUVDIVEPLANE [rads]:
write (tabxy (xl+5,yl+lO),'BIAS = :)
boxprint(yl+ll,xl,x2,'A U V CONTROL STATUS :');
write (tabxy (xl+5,y1+l3),'-vURRENT TARGET DEPTH:
write (tabxy (xl+5,yl+14),'CURRENT MODE :')
write (tabxy (xl+5,yl+15),'CURRENT MANEUVER : ');
boxprint(yl+lB,xl,x2,'PRESS KEY Fl1. TO ENTER NEW

TARGET DEPTH. )
boxprint(yl+19,xl,x2,'PRESS KEY F3 .. TO EXIT ACTIVE

CONTROL. )

end; ------------- RunModeScreen ------------

procedure
UpdateRunModeScreen (updatedepth, updatepitch, updatepitchrate,
updatediveplane :real;

updatetargetdepth : real;
updatemode: activecontrolmode;

updateattitude : auvattitude;
var biasi: real);

(This module updates the Closed Loop Control Run Mode
Screen with updated display para tters. Updates occur in
intervals specified by updateincrement interval declared in
ClosedLoopControl procedure.

begin (---------- UpdateRunModeScreen-------------)

{UPDATES STATUS oF A U V OPERATING PARAMETERS)
writein (tabxy (xl+37,yl+6) ,updatedepth: 6:3);
writeln (tabxy (x1+37,yl+7) ,updatepitch: 6:3);
writein (tabxy (xl+37,yl+8) ,updatepitchrate: 6:3);
writeln (tabxy (xl+37, yl+9) ,updatediveplane:6:3);
writeln (tabxy (xl+37,y1+lO) ,biasl:8:6);

( UPDATES THE A U V CONTROL STATUS)
write (tabxy (xl+30,yl+13) ,updatetargetdepth: 6:2);
case updatemode of

run : writein (tabxy (xl+30,yl+14),'RUN ');
exit : writeln (tabxy (xl+30,yl+14),'EXIT')

end;
case updateattitude of

maintain : writeln (tabxy (xl+30,yl+15),'MAINTAINING
DEPTH
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climb : writeln (tabxy (x1+30,y1+15),'CLIMBING TO
TARGET DEPTH');

diving : writeln (tabxy (xl+30,yl+15),'DIVING TO
TARGET DEPTH ");

end;

end; ------------ UpdateRunModeScreen ----------------

procedure GetDigitalSensoryData(var
depthanalogvolts,pitchanalogvolts,

pitchrateanalogvolts :real)

( This procedure uses PCLAB routines to sample selected
input telemetry channels from the AUV and digitizes these
inputs and multiplies them by the specified gains.

DT 2801-A / DT 707 Board set up:

channel 1 - AUV depth input
channel 2 - AUV pitch input
channel 3 - AUV pitchrate input)

const

( These are artificial gains used to simulate AUV telemetry
during program development. One signal from a signal
generator (+/- 1.25, 9 Hz, characteristic of the pitchrate
signal) is input to all 3 input channels. Gains are applied
to simulate the actual values. These and their application
in the procedure body should be removed after program
development is completed.)

depthgain = 1.0;
pitchgain = 1.0;
pitchrategain = 1.0;

{ These are AUV to DT 2801-A / DT 707 hook up board channel
configurations, conversion and computational arguments.)

depthchannel = 1; ( AUV output to DT-707 input channel
assignment )

depthpfs = +10.0; { Peak depth signal value)
depthmfs = -10.0; ( Minimum depth signal value)

pitchchannel = 2; ( AUV output to DT-707 input channel
assignment )

spdpfs = +10.0; ( Peak speed signal value)
spdmfs = -10.0; ( Minimum speed signal value)
pitchratechannel = 3; ( AUV output to DT-707 input channel

assignment )
pitchratepfs = +10.0; ( Peak pitchrate signal value)

63



pitchratemfs = -10.0; ( Minimum pitchrate signal value)

noc = 4096; { Number of Codes; conversion
resolution. The DT 2801-A performs
a 12 bit conversion. NOC = (2 A 12
conversion bits), ie 4096)

{ SetUpAdc and ADConTrigger PCL function arguments
p 6-8 PCL documentation

boardnum = 1;
numa2dchan = 3;
timingsource = 2; ( -- Sets trigger,internal clock )
adcgainl = 1;
adcgain2 = 2;
adcgain4 = 4; ( Sets the A/D gain; 1)
adcgain8 = 8;
startchannel = 1;
endchannel = 3;

var
pitchadv,
depthadv,
pitchrateadv,
signaladv, 4 Signal analog data value)
counter,status,
chanum,i,j : integer;

begin -------- procedure GetDigitalTelemetry--------

( Set up the DT 2801-A board to take data.)

status := SelectBoard (boardnum);

( Set up the DT 2801-A board to take data from 3 input
channels; Data sampling is initiated by the ADConTrigger
single channel sample of the depth channel and then single
ADC value samples of the speed and pitchrate follow. The
Trigger is connected to the DT 707 board at terminal 49 from
a signal generating source.)

status := ADConTrigger ( depthchannel, adcgainl, depthadv );
status := ADCValue ( pitchchannel, adcgainl, pitchadv );
status := ADCValue ( pitchratechannel,adcgainl,

pitchrateadv);

( Convert the digitized Analog Data Values for speed, depth,
pitchrate to analog voltage values. The algorithm for this
conversion is found in Appendix D of the PCLAB
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documentation.)

deptha-alogvolts := ( depthadv * (depthpfs-depthmfs)/noc
+ depthmfs;

(this allows for a -1 volt bias in the depth cell reading
at zero depth)
pitchanalogvolts := ( pitchadv * (spdpfs-spdmfs)/noc

+ spdmfs;
pitchrateanalogvolts := ( pitchrateadv * (pitchratepfs -

pitchratemfs)/noc )+pitchratemfs;

end; (--------- procedure GetDigitalTelemetry------

procedure ATTITUDE- ( tdepthvolts, adepthvolts : real;
var attitude : auvattitude );

( This module represents the "AUV Model Reference State
Space." Actual depth telemetry and the target depth are
compared and a voltage difference is computed. This
difference is then "dropped" through a voltage filter
to determine if the difference if within an acceptable
tolerance, or if a corrective diveplane command is
necessary. A "model gain" is applied to the voltage
difference and an errorvoltage is calculated and passed to
the main program for dive command generation. Although
these parameters are single valued, in a multi-state control
program these parameters could be implemented as arrays and
the model gain array could be the result of a real-
time program running synchronously with the main control
program.)

( COMPUTATIONAL SIGN CONVENTION: The voltage difference is
computed as the difference between TARGET DEPTH , or desired
AUV depth, and the ACTUAL DEPTH. PLUS voltage DIFFERENCE
generates down dive plane command; MINUS voltage DIFFERENCE
generates an UP dive plane command.)

const

depthcontroltolerence = 0.1;
modelgain = 1.0;

var

voltsdifference : real;

begin ------ Errorvolts --------

voltsdifference := tdepthvolts - adepthvolts;
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(+++++++++++ Control voltage filter +++++++++-+++++ )

( These conditions check if depth is within tolerence. If
so a zero error is assigned so as to result in a zero
diveplane command.)

if ( voltsdifference > 0) and
(abs(voltsdifference) <= depthcontroltolerence

then
begin

attitude := maintain;
end

else if ( voltsdifference < 0) and
( abs(voltsdifference) <= depthcontroltolerence

then
begin

attitude := maintain;
end

( This condition checks if actual depth is less than target
+ tolerence. In this case a DIVE command is necessary to
correct depth. )

else if ( voltsdifference > 0) and
abs(voltsdifference) > depthcontroltolerence

then
begin

attitude := diving;
end

( This last condition checks to see if the actual depth is
more than target + tolerence. In this case climb command is
necessary to correct depth. )

else if ( voltsdifference < 0) and
abs(voltsdifference) > depthcontroltolerence

then
begin

attitude := climb;
end;

end; ------ Errorvolts -----
procedure EST(var up,yq,z:real;var vhat: real; var initial:

integer; var bias,al,a2,a3,a4,a5,a6: real);

label 3;
type

try = array[l..10] of real;
trytry = array[1..10,1..lO] of real;
try40 = array[l..40,1..40] of real;
tryt40 = array(l..40] of real;
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array20 =array[1..20] of real;
miatrix20 array[1..20,1..20J of real;

const
ns =1

var
beta,khat, fc,xhat,g3 ,I,xu,xy,xz,xs,xnew,phi: try;
spt,f3,sg : trytry;
nx,np,ny,nf,nsnf,tiae,i,j : integer;
uf,yf,y,yhat,ud,u,yd,pO,sr,sigmax~fs: real;

procedure initializeArrays;

var
ij: integer;
begin

for i:= 1 to 10 do
begin

beta[i] :=0.0;
khat[i] :=0.0;
xhat[i] := 0.0;
xu [i] :=0. 0;
xy[i] :=0.0;
xz[i] :=0.o;
xnew~i] :=0.0;

* xs [i]: =0.0;
end;

np :=2*ns;
nx :=np + 1;
ny :=1;
Y:= 0.0;
uf:= 0.0;
ud:=O.0;
yd:=0.0;
yf := 0.0;
time := 0;
sigmax := 0.10;
sr :=1.0;
p0 : 1.0e6;
nf :=1;
bias :=0.0;
fc~l] :=0.8;
fc(2] :=0.2;
vhat :=2.1;
fs :-20.0;

for i:= 1 to nx do
begin

for J:= 1 to nx do
begin

phi(i] :=0.0;

sq~i,j] : 0.0;
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spt[i,j] := 0.0;
if i =j then
begin
sq~i,j] := sigmax;
sptli,j]:= p0;
end;

end;
end;

end;

procedure innerprod(var y9: real;var phi9,x9:try;var
nx9: integer);

var
J: integer;
begin
Y9:= 0.0;

for j := 1 to nx9 DO
begin

y9 := phi9[j] * x9[j]+ y9;
end;

end;

procedure update(var phiB: try;var u8,y8: real;
ns:integer);

var
n2: integer;
i: integer;
phisave: try;

begin
n2 :=ns*2+l;
for i:=1 to 2 do

begin
phisave[i] :=phi8(i];

end;
i := ns;

while i >= 2 do
begin

phis[i]:= phisave(i -1];

phi8[ns + i] := phisave[ns+i-l];
i: i-1

end;
phi8(l]:= y8;
phi8[ns + 1] := u8;

end;

68



procedure filter(var u4, y4 :real ;var x4, fc4 :try;var
nf4: integer);

var
nf42 : integer;
savex4 :try;

begin
update(x4,u4,y4,nf4);
nf42:= 2 * n4
innerprod(y4,x4, fc4,nf42);

end;

procedure newest(var nx7: integer;var xhat7,khat7,h7:
try; var y7:real);

var
delta: real;
ij: integer;
xsave:try;

begin
for i:=1 to nx7 do

begin
xsave[i] :=xhat7[i];
end;

delta := y7;
for j:= 1 to nx7 do
begin

delta:= delta - h7[j] *xhat7[j];

end;
for i:= 1 to nx7 do
begin

xhat7[iJ := xsave[i] + khat7[i]*
delta;

end;
end;

procedure kgain(nx,ny: integer;var p,q: trytry; r: real;
var phi,khat: try);

var
ij,k : integer;
pphi,
phitp : inatrix2O;
Mden : array2O;
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begin
for k:=1 to fly do begin

kden[kJ := 0;
for i:=1 to nx do begin

pphi[ik] :=0;
phitp[k,iJ : 0;
for j:=1 to nx do begin

pphi~i,k] := pphi[i,k] + p[i,j]*phi[j];
phitp[k,i] := phitp[ki] + phi[j]*p[j,i];
kden[k] := kden~kJ + p~i,j]*phi[j]*phi[i];

end;
end;
kden[k] := kden[k] + r;

end;
for k:=1 to ny do begin

for i:=1 to nx do begin
for j:=1 to nx do

p[i,j] := p~i,j] -pphi[i,k]*phitp[k,j]
/kden~k] + q~ij];

khat[i] := pphi~i,k]/kden[k];
end;

end;
end;

{BEGINNING OF PARAMETER ESTIMATION ROUTINE)

begin
if initial 1
then

begin
initializeArrays;
goto 3;

end;
ud:-uf;
filter(up,ufxu,fc,nf);
yd := yf;
filter(yq,yf,xy,fc,nf);
update(phi,ud,yd,ns);
phi~nxj :=l.0;
nsnf :=; ns + nf;
tiue:=-tiue+l;
if time <= nsnf then goto 3;
innerprod Cyhat ,phi, xhat, nx);

ESTIMATE BETA TERM IN THETA VECTOR

kgain(nx,ny~spt~sq,sr,phi,khat);
nevest(nxxhat,khat,phi,yf);
a4:- xhat(l]; a5:- xhat[2]; a6:= xhat[3];

(COMPUTE BIAS ESTIMATE FROM THE BETA TERM)
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beta[1]:=bias;
bias:=xhat[3];
bias:= bias + xhat[1]*beta[1];

( BEGINNING OF ESTIMATER FOR PITCH ANGLE )

f3[1,1] := 1.0;
f3[1,2] := 0.0;
f3[2,1] :=-vhat/fs;
f3[2,2] := 1.0;
g3[1] := 1.0/fs;
g3[2] := 0.0;
k(l] := -12.343/fs;
k[2] := 7.2/fs;
xnew[1] := yf - bias; (subtract bias from pitchrate)

for i := 1 to 2 do
begin

j := i+1;
xnew[j] := f3[i,l]*xs[2] + f3[i,2]*xs[3] +

g3[i]*xs[l] + k[i]*(z - xs[3]));
end;
xs[l] := xnew[l];
xs[2] := xnew[2];
xs[3] := xnew[3];
al := xs[l];a2 := xs[2];a3 := xs[3];

3:end;

procedure GenerateDiveplaneCommand (var
depth,auvpitch,auvpitchrate, auvdepthcom,delta: real;var
k:integer );

{ This procedure takes digitized voltage values of
depth,pitch,pitchrate, and target depth in volys and sends
new commands for control.)

const

{ DT 2801-A DIGITAL TO ANALOG Conversion declarations )

d2achannelO = 0;
pfs = 10.0;
mfs = - 10.0;
noc = 4096;
cl = 0.5556;
c2 = 1.0;
c3 = -0.2143;
a2 = 0.32;

scalefact = 2.0;
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var
digitaldatavalueO, digitaldatavaluel, status : integer;
el, e2, e3 ,vdelta,deltaO, sigma :real;

function ConvertAnalog2Digital ( analogvalue : real )
integer;

(This function converts analog signal volts to an
equivalent digital value. See App D of PCLAB book.)

var
temp :real;

begin
temp := (analogvalue -mfs )*((noc - 10) /(pfs-

mfs ) );
convertanalog2digital :~round (temp )

end;

function Sat(sig:real): real;
const

maginax = 1.0;

begin
if (abs(sig) <= magmax) then
begin
Sat := sig;

end
else if (sig > magmax) then
begin

Sat :=1.0;
end

else
begin
Sat :=-1.0;

end;
end;

begin (---------- GenerateDivePlaneCommand-------------)

e3 : =(auvdepthcom,-depth);
e2:=(auvpitch);
el :=(auvpitchrate);

sigma :=(cl*el)+(c2*e2)+(c3*e3);
deltaO : -(scalefact)*(sat(sigma));
delta :=delta.o - a2 * e2;
if k <= 10 then delta:=0.O;
if(abs(delta)>0.4) then
begin

72



delta: =0. 4*abs (delta) /delta;
end;

vdelta : =-l0. 0*delta;
digitaldatavalueo :=convertanaloq2digital (vdelta);
status := dacvalue (d2achannelO, digitaldatavalueo);

end; (---------- GenerateDivePlaneConuand--------------)

procedure InitializeParameters;

( This procedure initializes all declared control and
display parameters to zero.)

begin { ---- procedure InitializeParameters-- )
yawrate := 0.0;
auvdepthvolts :=0.0;
auvspeedvolts :=0.0;
auvpitchratevolts := 0.0;
auvdepth :=0.0;
auvspeed :=0.0;
auvpitchrate := 0.0;
estdepth:=0. 0;
err:=0.0;
targetdepth := 0.0;
diveplane := 0.0;

end; { ---- procedure InitializeParameters ---

begin (-------------ActiveControl---------------------

initializeparaneters;
initial :=1; (initializeArrays in EST procedure)
5:
time:=;
clrscr;
writeln('DATA FILE NAME? (ie f082201.dat]');
readln(filenane);
assign(filevar, filename);
rewrite(filevar);
clrscr;
activemode := run;

repeat (---- Repeat until activemode = exit--------

ClosedLoopControlScreen;
GetTargetDepth ( targetdepth, targetdepthvolts )
RunModeS creen;
1:
while ( not keyhit ( modereply, uaodereply2)) do
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1gin
updatecounter :=0;
while ( updatecounter < updateincrement )do
begin

GetDigitalSensoryData (auvdepthvolts ,yawrate,
auvpitchratevolts);

auvdepth :=auvdepthvolts;
auvpitch :=auvpitchvolts/lO.0;
auvpitchrate : = auvpitchratevolts/lO. 0;

GenerateDiveplaneCommand ( auvdepth, ac2, ac,
targetdepth, diveplane, time )

EST (diveplane, auvpitchrate, auvdepth,
speed, initial,biasl,acl,ac2,ac3,ac4,ac5, ac6);

writeln(filevar,tiue:5,auvdepth: 12:6,speed: 12:6,
pitchrate: 12:6, diveplane: 12:6, targetdepth: 12:6,
biasl:12:6,acl:12:6,ac2:12:6,ac3:12:6,ac4:12:6,
ac : 12 :6, ac6: 12 :6);

ATTPITUDE- (targetdepthvolts, auvdepthvolts, attitude);

initial := 0;
updatecounter : = updatecounter + 1;
time :=time + 1;

end; ( hile updatecounter < updateincrement)

UpdateRun~odeScreen (ac3, ac2 ,al, diveplane,
targetdepth, act ivemode,

attitude,biasl);

enI; ( hile not KeyHit )

if (ord(modereply) = 27) and (ord(modereply2) = 59)
then

begin
close(filevar);
goto 5;
end

else if (ord(modereply) = 27) and (ord(modereply2)=61)
then

begin
close(filevar);
activemode := exit;

end
until (activemode=exit)

end; ---------- ActiveControl-----------------------
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begin ----------- StatusAndCommand --

repeat
StatusAndCommandScreen;
GetKey (•",mode,mode2);
if ( ord (mode) = 27 ) and ( ord (mode2) = 59 ) then

begin
clrbox2 (xlyl,x2,y2);
ClosedLoopControl;

end;
until ( mode in ['Q','q'] );

end; ( ---------- StatusAndCommand-------------------

procedure InitializeZeroDigitalSignalOut;

( This procedure MUST be executed as the first procedure
called in the main program to insure a zero signal out on
the 2 output channels. Otherwise the DT 2801-A board
defaults to a minimum full scale output. )

const

digitalchanO = 0;
digitalchani = 1;
digitalcommandboard = 1;

var
status,
digitaldatavalue : integer;

begin
digitaldatavalue := 2048; ( This will be converted

to an equivalent zero analog
signal out on a 12 bit
resolution converter like DT
2801-A.

status := initialize;
status := selectboard ( digitalcommandboard );
status := dacvalue ( digitalchano, digitaldatavalue );
status := dacvalue ( digitalchanl, digitaldatavalue );
status := terminate;

end;

procedure DeactivateADBoardAndExitProgram;

( This procedure deactivates the DT 2801-A board and
presents an exit screen.)
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var
status :integer;

begin -------- DeactivateADBoardAndExitProgramn------
status := terminate;
clrbox2 (xl,yl,x2,y2);
boxprint (yl+l0,xl,x2,'THIS CONCLUDES YOUR AUV

AUTOPILO1TfING SESSION , BYE')-,

end- -------DeactivateADeoardAndExitProgram ----------

BEGIN {-------------- MAIN PROGRAM-------------I

InitializeZeroDigitalSignalout;
clrscr;
repeat

MainMenu ( option )

if ( option in ['R','r']) then
begin

repeat
begin

StatusAndCommand ( controlmode )
end;

until ( controlmode in ['g','Q']);
end;

until ( option in ['Q','q']);

DeactivateADBoardAndExitProgram;

END. {----------------- MAIN PROGRAM--------------)

III
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